Part Number Hot Search : 
HMC1021S HAD825 00309 ANTX1 M12864 HAD825 SDHN5KS LU2905
Product Description
Full Text Search
 

To Download BCR1AM-8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI SEMICONDUCTOR TRIAC
BCR1AM-8
LOW POWER USE
PLANAR PASSIVATION TYPE
BCR1AM-8
OUTLINE DRAWING
5.0 MAX 4.4
Dimensions in mm
2
VOLTAGE CLASS TYPE NAME
3 1 T1 TERMINAL 2 T2 TERMINAL 3 GATE TERMINAL
CIRCUMSCRIBE CIRCLE 0.7
1.25 1.25
1.3
12.5 MIN
1
5.0 MAX
1.0 10 0.41 1 0.1 6 1 0.23
* * * * *
IT (RMS) ..................................................................... 1.0A VDRM ....................................................................... 400V IFGT ! ....................................................................... 5mA IRGT !, IRGT # .......................................... 5mA (3mA) V5 IFGT # ..................................................................... 10mA
132
JEDEC : TO-92
APPLICATION Contactless AC switches, heating, refrigerator, washing machine, electric fan, vending machines, trigger circuit for low and medium triac, solid state relay, other general purpose control applications
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 8 400 500 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg --
Parameter RMS on-state current Surge on-state current I2t for fusing Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Typical value
Conditions Commercial frequency, sine full wave 360 conduction, Tc=56C V4 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
Ratings
-40 ~ +125 -40 ~ +125
3.9 MAX
Unit A A A2s W W V A C C g
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR1AM-8
LOW POWER USE
PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # VFGT # IFGT ! IRGT ! IRGT # IFGT # VGD Rth (j-c) (dv/dt)c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # $ ! @ # $ Tj=125C, VD=1/2VDRM Junction to case V4 Tj=25C, VD=6V, RL=6, RG=330 Tj=25C, VD=6V, RL=6, RG=330 Test conditions Tj=125C, VDRM applied Tc=25C, ITM=1.5A, Instantaneous measurement Limits Min. -- -- -- -- -- -- -- -- -- -- 0.1 --
V3
Typ. -- -- -- -- -- -- -- -- -- -- -- -- --
Max. 1.0 1.6 2.0 2.0 2.0 2.0 5 5 V5 5 V5 10 -- 50 --
Unit mA V V V V V mA mA mA mA V C/ W V/s
V2. Measurment using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. Case temperature is measured at the T2 terminal 1.5mm away from the molded case. V5. High sensitivity (IGT3mA) is also available. (IGT item 1)
Voltage class
VDRM (V)
(dv/dt) c Min. Unit Test conditions
Commutating voltage and current waveforms (inductive load)
1. Junction temperature Tj=125C 8 400 2 V/s 2. Rate of decay of on-state commutating current (di/dt)c=-0.5A/ms 3. Peak off-state voltage VD=400V
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
TIME TIME VD
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 102 TC = 25C RATED SURGE ON-STATE CURRENT 10
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
7 5 3 2
8
101 7 5 3 2 100 7 5 3 2 10-1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 ON-STATE VOLTAGE (V)
6
4
2 0 100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR1AM-8
LOW POWER USE
PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
GATE TRIGGER CURRENT (Tj = tC) GATE TRIGGER CURRENT (Tj = 25C)
101 7 5 3 2
PGM = 1W VGM = 6V PG(AV) = 0.1W IGM = 1A
100 7 5 IFGT I 3 IRGT I 2 IRGT III 10-1 7 5 3 2
103 7 5 4 3 2
TYPICAL EXAMPLE
IFGT III
IFGT III
VGD = 0.1V
102 7 IFGT I IRGT I IRGT III 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
10-2 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 GATE CURRENT (mA)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
GATE TRIGGER VOLTAGE (Tj = tC) GATE TRIGGER VOLTAGE (Tj = 25C)
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
TRANSIENT THERMAL IMPEDANCE (C/W)
102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 103 7 5 3 2 JUNCTION TO AMBIENT 102 7 5 3 2 101 7 5 3 2 100 10-1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
100 (%)
VFGT I, VRGT I
JUNCTION TO CASE
VRGT III, VFGT III
101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
MAXIMUM ON-STATE POWER DISSIPATION
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS
ON-STATE POWER DISSIPATION (W)
2.0
1.6
CASE TEMPERATURE (C)
140 120 100 80 60 40 20 0 0
1.2
0.8
360 CONDUCTION RESISTIVE, INDUCTIVE LOADS
360 CONDUCTION
0.4
0
0
0.4
0.8
1.2
1.6
2.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR1AM-8
LOW POWER USE
PLANAR PASSIVATION TYPE
REPETITIVE PEAK OFF-STATE CURRENT (Tj = tC) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25C)
AMBIENT TEMPERATURE (C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 CURVES APPLY REGARDLESS 140 OF CONDUCTION ANGLE NATURAL CONVECTION 120 NO FINS 100 80 60 40 20 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RMS ON-STATE CURRENT (A) RESISTIVE, INDUCTIVE LOADS
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C) TYPICAL EXAMPLE LACHING CURRENT (mA) 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 100 (%)
LACHING CURRENT VS. JUNCTION TEMPERATURE
+ T2 , G+ TYPICAL - T2 , G- EXAMPLE - T2 , G+ 10-1 -40 0 40
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION 80 120
+ T2 , G- TYPICAL EXAMPLE
HOLDING CURRENT (Tj = tC) HOLDING CURRENT (Tj = 25C)
160
JUNCTION TEMPERATURE (C)
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) 160 140 TYPICAL EXAMPLE
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125C
BREAKOVER VOLTAGE (dv/dt = xV/s ) BREAKOVER VOLTAGE (dv/dt = 1V/s )
BREAKOVER VOLTAGE (Tj = tC) BREAKOVER VOLTAGE (Tj = 25C)
120 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (C)
120 100 80 60 III QUADRANT 40 20 0 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF RISE OF OFF-STATE VOLTAGE (V/s) I QUADRANT
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR1AM-8
LOW POWER USE
PLANAR PASSIVATION TYPE
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/s)
COMMUTATION CHARACTERISTICS 101 TC = 125C 7 TYPICAL EXAMPLE IT = 1A 5 = 500s 4 VD = 200V 3 2 III QUADRANT MINIMUM CHARAC100 TERISTICS 7 VALUE 5 4 I QUADRANT 3 2 10-1 -1 10 2 3 4 5 7 100 2 3 4 5 7 101 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10
100 (%)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH TYPICAL EXAMPLE
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
IFGT I IRGT III IRGT I IFGT III
2 3 4 5 7 101
2 3 4 5 7 102
RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms)
GATE CURRENT PULSE WIDTH (s)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6 6
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6
TEST PROCEDURE 2 6
6V V
A RG
6V V
A RG
TEST PROCEDURE 3
TEST PROCEDURE 4
Feb.1999


▲Up To Search▲   

 
Price & Availability of BCR1AM-8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X